HINDU COLLEGE :: GUNTUR

Name of the Lecturer : Dr. S.V.S. GIRIJA , Lecturer in Mathematics

Assignments 2018-19

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
	ANUMULA AYYAPPAREDDY	MPC	9	Y163028112	
1					1.state and prove Stokes theorem 2.show that curl(gradf)=0
2	ARDHALA ANILKUMAR	MPC	2	Y163028113	1.state and prove Lagranges theorem 2.state and prove cayleys
					theorem
3	BADE ANKAMMARAO	MPC	18	Y163028114	1.state and prove fundamental theorem of homomorphism 2.show
					that nth roots of unity form an Abelian group
4	BANALA RAVALI	MPC	4	Y163028116	1. state and prove first shifting theorem. 2. state and prove initial
					value theorem
5	BATHULA RAMESHBABU	MPC	15	Y163028117	1.state and prove final value theorem 2.state and prove convolution
<u> </u>					theorem
6	BATTU DEVENDRAKUMAR	MPC	23	Y163028118	1.state and prove Rolles theorem. 2. state and prove Lagranges mean
					value theorem.
7	BILLA MOUNI	MPC	36	Y163028119	1. state and prove Cauchys mean value theorem 2. state and prove
			4.6	V4.520204.20	Fundamental theorem of integral calculus
8	BONTHU VEERAREDDY	MPC	16	Y163028120	1.state and prove Cauchy-Schwartz inequality 2. state and prove
	DILLA CATICII	NADC	20	V4.C2020424	Bessels inequality
9	BULLA SATISH	MPC	38	Y163028121	1.state and prove Parsevals identity 2.state and prove gramschmidt orthogonalisation process
	CHANDII DAVANIZIMAAD	MPC	17	Y163028122	1.find orthonormal basis for the set of vectors
10	CHANDU PAVANKUMAR	IVIPC	17	1103020122	$\{(1,2,3),(2,1,3),(1,1,1)\}$. 2. state and prove cayley _hamilton theorem
	CHEEDA VENKATA PRATHAP	MPC	12	Y163028123	1. state and prove basis existance theorem 2. state and prove rank-
11	CHEEDA VENKATA FRATTIAF	IVIFC	12	1103028123	nullity theorem
	CHERUKURI SAIKRISHNA	MPC	37	Y163028124	1.state and prove invarience theorem on subspaces .2.show that any
12	CHEROKOKI SAIKKISHIYA	IVII C	37	1103020124	two bases have same dimension
	CHIMAKURTHI PRADEEPKUMAR	MPC	11	Y163028125	1.state and prove basis extension theorem. 2.show that range space of
13	S			. 100020120	a linear transformation is a subspace of V(F)
	CHINNAPUREDDYVENKATANARENDRAREDDY	MPC	3	Y163028126	1.show that null space of a linear transformation is a subspace of
14		5			U(F) 2. show that $\dim(\alpha+\beta)=\dim\alpha+\dim\beta-\dim(\alpha \wedge \beta)$

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
15	DEVARAKONDA ELISHARANI	MPC	28	Y163028127	1.show that dim (V/W)=dimV-dimW 2.If Wis a non empty subset of V then show that W is subspace iff $a\alpha+b\beta E$ V
16	DUDIKI SANDHYA MADHAVI	MPC	24	Y163028128	1.state and prove Gauss divergence theorem 2.state and prove Greens theorem
17	DUPPALA VENKATARAJESH	MPC	41	Y163028129	1.state and prove Stokes theorem 2.show that curl(gradf)=0
18	GORIKAPUDI SANDEEP	MPC		Y163028130	1.state and prove Lagranges theorem 2.state and prove cayleys theorem
19	JETTI VENKATESH	MPC		Y163028131	1.state and prove fundamental theorem of homomorphism 2.show that nth roots of unity form an Abelian group
20	KANDA VEERANJANEYULU	MPC		Y163028132	1. state and prove first shifting theorem. 2. state and prove initial value theorem
21	KUKKAMALLA PRADEEPCHAND	MPC	1	Y163028133	1.state and prove final value theorem 2.state and prove convolution theorem
22	MAGULURI SATYANARAYANA	MPC	46	Y163028134	1.state and prove Rolles theorem. 2. state and prove Lagranges mean value theorem.
23	MANIMALA THIRUPATHI RAO	MPC	27	Y163028135	1.state and prove Cauchys mean value theorem 2.state and prove Fundamental theorem of integral calculus
24	MATTUKOYYA BALA RAJU	MPC	22	Y163028136	1.state and prove Cauchy-Schwartz inequality 2. state and prove Bessels inequality
25	MOGUL HUSSAIN	MPC	33	Y163028137	1.state and prove Parsevals identity 2.state and prove gramschmidt orthogonalisation process

HINDU COLLEGE :: GUNTUR

Name of the Lecturer: Y. SREEKANTH, Lecturer in Mathematics

Assignments 2018-19

S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment
	MUNNANGI TEJESWARA REDDY	MPC	25	Y163028139	1. state and prove basis existance theorem 2. state and prove rank-
27					nullity theorem
20	NADIMPALLI SARATHKUMAR	MPC	8	Y163028140	1.state and prove invarience theorem on subspaces .2.show that any
28					two bases have same dimension
26	NAMBULA GOPALAKRISHNA	MPC	20	Y163028141	1.state and prove basis extension theorem. 2.show that range space of
29					a linear transformation is a subspace of V(F)
30	PATRA KOTESWARARAO	MPC	40	Y163028142	1.show that null space of a linear transformation is a subspace of
30					U(F) 2. show that $\dim(\alpha+\beta)=\dim\alpha+\dim\beta-\dim(\alpha \land \beta)$
31	PATRA YESUBABU	MPC	34	Y163028143	1.show that dim (V/W)=dimV-dimW 2.If Wis a non empty subset of
31					V then show that W is subspace iff aα+bβε V
32	POTLURI GOPI	MPC	7	Y163028144	1.show that every field is an integral domain. 2. show that every
32					finite integral domain is a field
33	RAYAPUDI AJAY KIRAN KUMAR	MPC		Y163028145	1.show that characterstic of an integral domain is either prime or
33					zero. 2. prove that every boolean ring is commutative.
34	SHAIK ARIFULLAKHADIRMOHIDDINSAHEB	MPC	26	Y163028146	show that union of two ideals is also an ideal iff one is contained in
34					the other.
35	SHAIK JALEEL BASHA	MPC	6	Y163028147	1.Define a principal ideal ring. Show that every field is a principal
33					ideal ring.
36	SHAIK SARDAM HUSSAIN	MPC	14	Y163028148	If f is a homomorphism from a ring R into a ring S, then show that
30					Ker f is an ideal of R.
37	SHAIK SULEMAN	MPC		Y163028149	Define maximal ideal of a ring. Show that an ideal M of a
- 37					commutative ring R with unity is maximal iff R/M is a field.
38	SHAIK VALI	MPC		Y163028150	1.show that characterstic of an integral domain is either prime or
					zero. 2. prove that every boolean ring is commutative.
39	THOTTEMPUDI PRABHUDAS	MPC		Y163028151	show that union of two ideals is also an ideal iff one is contained in
37					the other.
40	VALAPARLA SURESHBABU	MPC	39	Y163028152	1.Define a principal ideal ring. Show that every field is a principal
					ideal ring.
S. No.	Student Name	Group	Roll No.	Hallticket No.	Topic of Assignment

ARUDRA MAHESH BABU	MPCs		Y163028162	If f is a homomorphism from a ring R into a ring S, then show that Ker f is an ideal of R.
BANDUCHODE VENKAT SAI	MPCs		Y163028163	1.show that dim (V/W) =dim V -dim W 2.If Wis a non empty subset of V then show that W is subspace iff $a\alpha$ +b β E V
BATHULAVAIKUNTATHRIVENDRABABU	MPCs	220	Y163028164	1.show that every field is an integral domain. 2. show that every finite integral domain is a field
CHOUKALA ADILAKSHMI	MPCs	201	Y163028165	1.show that characterstic of an integral domain is either prime or zero. 2. prove that every boolean ring is commutative.
DEEKONDA THRIVENU	MPCs	239	Y163028166	show that union of two ideals is also an ideal iff one is contained in the other.
DUDEKULA ANWAR JANI	MPCs	209	Y163028167	1.Define a principal ideal ring. Show that every field is a principal ideal ring.
GALI TEJA	MPCs	214	Y163028168	If f is a homomorphism from a ring R into a ring S, then show that Ker f is an ideal of R.
GANDIKOTA BALA GAYATRI	MPCs	210	Y163028169	Define maximal ideal of a ring. Show that an ideal M of a commutative ring R with unity is maximal iff R/M is a field.
GANGASANI KRISHNA REDDY	MPCs		Y163028170	1.show that characterstic of an integral domain is either prime or zero. 2. prove that every boolean ring is commutative.
GUDIMETLA NEEHRUDAS	MPCs	218	Y163028171	show that union of two ideals is also an ideal iff one is contained in the other.